3.819 \(\int \frac{\sqrt{\cos (c+d x)}}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=75 \[ -\frac{2 b \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{a^2 d}+\frac{2 b^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d (a+b)}+\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

[Out]

(2*EllipticE[(c + d*x)/2, 2])/(a*d) - (2*b*EllipticF[(c + d*x)/2, 2])/(a^2*d) + (2*b^2*EllipticPi[(2*a)/(a + b
), (c + d*x)/2, 2])/(a^2*(a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.242028, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {4264, 3852, 3849, 2805, 3787, 3771, 2639, 2641} \[ \frac{2 b^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d (a+b)}-\frac{2 b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x]),x]

[Out]

(2*EllipticE[(c + d*x)/2, 2])/(a*d) - (2*b*EllipticF[(c + d*x)/2, 2])/(a^2*d) + (2*b^2*EllipticPi[(2*a)/(a + b
), (c + d*x)/2, 2])/(a^2*(a + b)*d)

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3852

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[b^2/(a^2
*d^2), Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a - b*Csc[e + f*x])/Sqrt[d*C
sc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)}}{a+b \sec (c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx\\ &=\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{a-b \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx}{a^2}+\frac{\left (b^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{a^2}\\ &=\frac{b^2 \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^2}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{a}-\frac{\left (b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \, dx}{a^2}\\ &=\frac{2 b^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 (a+b) d}+\frac{\int \sqrt{\cos (c+d x)} \, dx}{a}-\frac{b \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{2 b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 b^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 (a+b) d}\\ \end{align*}

Mathematica [A]  time = 0.291558, size = 84, normalized size = 1.12 \[ -\frac{2 \sin (c+d x) \left (-(a+b) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right ),-1\right )-b \Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+a E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a^2 d \sqrt{\sin ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x]),x]

[Out]

(-2*(a*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - (a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] - b*Ellip
ticPi[-(a/b), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a^2*d*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Maple [A]  time = 1.507, size = 226, normalized size = 3. \begin{align*} 2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{ \left ( a-b \right ){a}^{2}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ({\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}+{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}-{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab+{b}^{2}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x)

[Out]

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^
2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))*a^2-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+b^2*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a
-b),2^(1/2)))/a^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x
+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos{\left (c + d x \right )}}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral(sqrt(cos(c + d*x))/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)